

usability testing

July 14, 2015 Valkyrie Savage

Genres of assessment

Automated

Usability measures computed by software

Inspection

Based on skills, and experience of evaluators

Formal

Models and formulas to calculate measures

Empirical

Usability assessed by testing with real users

Designing Controlled Experiments

jurvetson on flickr

Steps in Designing an Experiment

- 1. State a lucid, testable hypothesis
- 2. Identify variables (independent, dependent, control, random)
- 3. Design the experimental protocol
- 4. Choose user population

- 5. Apply for human subjects protocol review
- 6. Run pilot studies
- 7. Run the experiment
- 8. Perform statistical analysis
- 9. Draw conclusions

Common Metrics in HCI

- □ Performance metrics:
 - ☐ Task success (binary or multi-level)
 - ☐ Task completion time
 - ☐ Errors (slips, mistakes) per task
 - ☐ Efficiency (cognitive & physical effort)
 - □ Learnability

- **□** Satisfaction metrics:
 - □ Self-report on ease of use, frustration, etc.

Satisfaction Metric: Likert Scales

"Overall, I am satisfied with the ease of completing the tasks in this scenario"

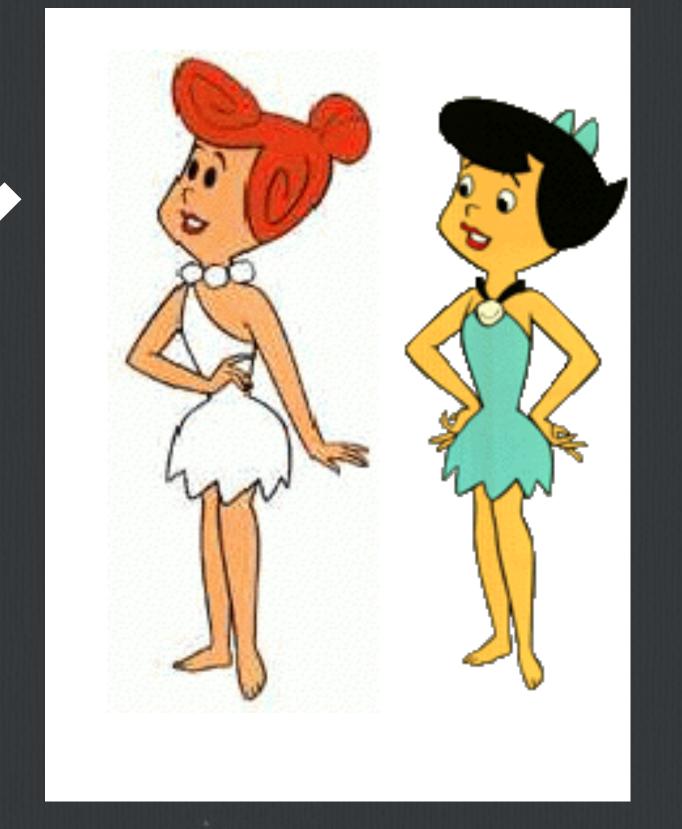
1: Strongly Disagree

2: Disagree

3: Neither agree nor disagree

4: Agree

5: Strongly agree


☐ Respondents rate their level of agreement to a statement

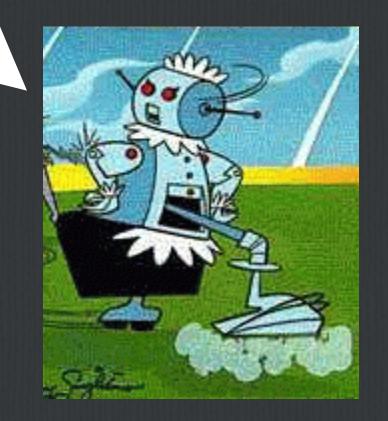
☐ Likert data is ordinal, not continuous (matters for analysis)!

Between Subjects Design

Wilma and Betty use one


interface

Dino and Fred use the other



Within Subjects Design

Everyone uses both interfaces

Between vs. Within Subjects

Between subjects Within subjects Each participant uses one condition All participants try all conditions □ +/- Participants cannot compare ☐ + Compare one person across conditions conditions to isolate effects of individual diffs ☐ + Can collect more data for a given + Requires fewer participants condition - Need more participants - Fatigue effects - Bias due to ordering/learning effects

Within Subjects: Ordering Effects

- ☐ In within-subjects designs ordering of conditions is a variable that can confound results
 - □ Why?
- ☐ Turn it into a random variable
 - ☐ Randomize order of conditions across subjects
 - Counterbalancing (ensure all orderings are covered)
 - □ Latin square (partial counterbalancing)
 - Ш ...

Run the Experiment

- ☐ Always pilot it first!
 - ☐ Reveals unexpected problems
 - ☐ Can't change experiment design after starting it
- ☐ Always follow same steps use a checklist
- ☐ Get consent from subjects
- □ Debrief subjects afterwards

ok, now we're going to do it!

Design an Experiment!

- 1. State a lucid, testable hypothesis
- 2. Identify variables (independent, dependent, control, random)
- 3. Design the experimental protocol
- 4. Choose user population

- 5. Apply for human subjects protocol review
- 6. Run pilot studies
- 7. Run the experiment
- 8. Perform statistical analysis
- 9. Draw conclusions

Design an Experiment!

- 1. State a lucid, testable hypothesis
- 2. Identify variables (independent, dependent, control, random)
- 3. Design the experimental protocol
- 4. Choose user population

- 5. Apply for human subjects protocol review
- 6. Run pilot studies
- 7. Run the experiment
- 8. Perform statistical analysis
- 9. Draw conclusions

http://tinyurl.com/littletrans160

http://tinyurl.com/hellohello160

Design an Experiment!

- 1. State a lucid, testable hypothesis
- 2. Identify variables (independent, dependent, control, random)
- 3. Design the experimental protocol
- 4. Choose user population

- 5. Apply for human subjects protocol review
- 6. Run pilot studies
- 7. Run the experiment
- 8. Perform statistical analysis
- 9. Draw conclusions

Cognitive Walkthrough

From: Preece, Rogers, Sharp – Interaction Design

- ☐ Given an interface prototype or specification, need:
 - ☐ A detailed task with a concrete goal, ideally motivated by a scenario
 - ☐ Action sequences for user to complete the task
- Ask the following questions for each step:

- ☐ Will the users know what to do?
- ☐ Will the user notice that the correct action is available?
- ☐ Will the user interpret the application feedback correctly?
- Record: what would cause problems, and why?

usability testing

July 14, 2015 Valkyrie Savage